Resonance in the mouse tibia as a predictor of frequencies and locations of loading-induced bone formation.

نویسندگان

  • Liming Zhao
  • Todd Dodge
  • Arun Nemani
  • Hiroki Yokota
چکیده

To enhance new bone formation for the treating of patients with osteopenia and osteoporosis, various mechanical loading regimens have been developed. Although a wide spectrum of loading frequencies is proposed in those regimens, a potential linkage between loading frequencies and locations of loading-induced bone formation is not well understood. In this study, we addressed a question: Does mechanical resonance play a role in frequency-dependent bone formation? If so, can the locations of enhanced bone formation be predicted through the modes of vibration? Our hypothesis is that mechanical loads applied at a frequency near the resonant frequencies enhance bone formation, specifically in areas that experience high principal strains. To test the hypothesis, we conducted axial tibia loading using low, medium, or high frequency to the mouse tibia, as well as finite element analysis. The experimental data demonstrated dependence of the maximum bone formation on location and frequency of loading. Samples loaded with the low-frequency waveform exhibited peak enhancement of bone formation in the proximal tibia, while the high-frequency waveform offered the greatest enhancement in the midshaft and distal sections. Furthermore, the observed dependence on loading frequencies was correlated to the principal strains in the first five resonance modes at 8.0-42.9 Hz. Collectively, the results suggest that resonance is a contributor to the frequencies and locations of maximum bone formation. Further investigation of the observed effects of resonance may lead to the prescribing of personalized mechanical loading treatments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Mouse BMDC Isolation and Culture under Endotoxin-Free Conditions

Introduction: Dendritic cells are very important in basic studies and vaccine research, but isolation and culture of these cells face challenges due to their small number in tissues. Since there is no standard method, we addressed some of the factors affecting the efficiency of dendritic cell isolation and culture from BALB/c mouse bone marrow.   Materials & Methods: Bone marrow cells isolated...

متن کامل

Citrus extract protects mouse bone marrow cells against gamma-irradiation

With respect to radiation damage to humans, it is important to seek possible radioprotectants to modify the normal response of biological systems to radiation-induced toxicity or lethality. For this reasons, the search for less-toxic radiation radioprotectants has spurred interest in the development of different compounds. The radioprotective effects of citrus extract were investigated by using...

متن کامل

Citrus extract protects mouse bone marrow cells against gamma-irradiation

With respect to radiation damage to humans, it is important to seek possible radioprotectants to modify the normal response of biological systems to radiation-induced toxicity or lethality. For this reasons, the search for less-toxic radiation radioprotectants has spurred interest in the development of different compounds. The radioprotective effects of citrus extract were investigated by using...

متن کامل

Correlation of Anthropometric Measurements of Proximal Tibia in Iranian Knees with Size of Current Tibial Implants

of the Caucasian population. The purpose of this study was to investigate the morphometry of the proximal tibia in thestandard resected surface of total knee arthroplasty (TKA).Methods: In this descriptive study, the anthropometric data of the proximal tibia were measured in 132 knees (80 malesand 52 females) using magnetic resonance imaging in 2015. The collected data include...

متن کامل

Comparative Study of Bone Repair Using Porous Hydroxyapatite/ β-Tricalcium Phosphate and Xenograft Scaffold in Rabbits with Tibia Defect

Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomechanics and modeling in mechanobiology

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2014